Tag: Research Laboratory of Electronics

Team creates map for production of eco-friendly metals

In work that could usher in more efficient, eco-friendly processes for producing important metals like lithium, iron, and cobalt, researchers from MIT and the SLAC National Accelerator Laboratory have mapped what is happening at the atomic level behind a particularly promising approach called metal electrolysis. By creating maps for a wide range of metals, they […]

Read More

From seawater to drinking water, with the push of a button

MIT researchers have developed a portable desalination unit, weighing less than 10 kilograms, that can remove particles and salts to generate drinking water. The suitcase-sized device, which requires less power to operate than a cell phone charger, can also be driven by a small, portable solar panel, which can be purchased online for around $50. […]

Read More

Professor Emeritus Markus Zahn, who specialized in electromagnetic field interactions, dies at 75

Markus Zahn, professor emeritus within the MIT Department of Electrical Engineering and Computer Science (EECS), died on March 13. He was 75 years old. Zahn was born in Bergen Belsen, Germany, in 1946, to Maria (Fischer) Zahn and Irving Zahn, each the sole survivor of their respective families during the Holocaust. The small family emigrated […]

Read More

Bringing together the next generation of quantum coders

California Polytechnic State University undergraduate students Alexander Knapen and Nayana Tiwari and graduate student Julian Rice had never programmed on quantum computers before. But after 50 hours at the 2022 MIT Interdisciplinary Quantum Hackathon, they had built an online quantum chat server that encrypts messages using quantum algorithms. Knapen, Tiwari, and Rice had worked tirelessly […]

Read More

A fabric that “hears” your heartbeat

Having trouble hearing? Just turn up your shirt. That’s the idea behind a new “acoustic fabric” developed by engineers at MIT and collaborators at Rhode Island School of Design. The team has designed a fabric that works like a microphone, converting sound first into mechanical vibrations, then into electrical signals, similarly to how our ears […]

Read More

Physicists steer chemical reactions by magnetic fields and quantum interference

Physicists in the MIT-Harvard Center for Ultracold Atoms (CUA) have developed a new approach to control the outcome of chemical reactions. This is traditionally done using temperature and chemical catalysts, or more recently with external fields (electric or magnetic fields, or laser beams). MIT CUA physicists have now added a new twist to this: They […]

Read More

A new, inexpensive catalyst speeds the production of oxygen from water

An electrochemical reaction that splits apart water molecules to produce oxygen is at the heart of multiple approaches aiming to produce alternative fuels for transportation. But this reaction has to be facilitated by a catalyst material, and today’s versions require the use of rare and expensive elements such as iridium, limiting the potential of such […]

Read More

More sensitive X-ray imaging

Scintillators are materials that emit light when bombarded with high-energy particles or X-rays. In medical or dental X-ray systems, they convert incoming X-ray radiation into visible light that can then be captured using film or photosensors. They’re also used for night-vision systems and for research, such as in particle detectors or electron microscopes. Researchers at […]

Read More

MIT.nano receives grant to acquire focused ion beam scanning electron microscope

The VELION FIB-SEM, a next-generation dual-beam nanofabrication platform located in MIT.nano, will become a permanent part of the facility’s characterization capabilities, thanks in part to a Major Research Instrumentation (MRI) award from the U.S. National Science Foundation (NSF). A team of MIT researchers led by James LeBeau, the John Chipman Associate Professor of Materials Science […]

Read More

Tiny materials lead to a big advance in quantum computing

Like the transistors in a classical computer, superconducting qubits are the building blocks of a quantum computer. While engineers have been able to shrink transistors to nanometer scales, however, superconducting qubits are still measured in millimeters. This is one reason a practical quantum computing device couldn’t be miniaturized to the size of a smartphone, for […]

Read More

Vibrating atoms make robust qubits, physicists find

MIT physicists have discovered a new quantum bit, or “qubit,” in the form of vibrating pairs of atoms known as fermions. They found that when pairs of fermions are chilled and trapped in an optical lattice, the particles can exist simultaneously in two states — a weird quantum phenomenon known as superposition. In this case, […]

Read More

Reasserting U.S. leadership in microelectronics

The global semiconductor shortage has grabbed headlines and caused a cascade of production bottlenecks that have driven up prices on all sorts of consumer goods, from refrigerators to SUVs. The chip shortage has thrown into sharp relief the critical role semiconductors play in many aspects of everyday life. But years before the pandemic-induced shortage took […]

Read More

Clean room as classroom

MIT undergraduates are using labs at MIT.nano to tinker at the nanoscale, exploring spectrometry, nanomaterial synthesis, photovoltaics, sensor fabrication, and other topics. They’re also getting an experience not common at the undergraduate level — gowning up in a bunny suit and performing hands-on research inside a clean room. During the fall 2021 semester, these students […]

Read More

Physicists watch as ultracold atoms form a crystal of quantum tornadoes

The world we experience is governed by classical physics. How we move, where we are, and how fast we’re going are all determined by the classical assumption that we can only exist in one place at any one moment in time. But in the quantum world, the behavior of individual atoms is governed by the […]

Read More

MIT engineers produce the world’s longest flexible fiber battery

Researchers have developed a rechargeable lithium-ion battery in the form of an ultra-long fiber that could be woven into fabrics. The battery could enable a wide variety of wearable electronic devices, and might even be used to make 3D-printed batteries in virtually any shape. The researchers envision new possibilities for self-powered communications, sensing, and computational […]

Read More